Homepage
The Institute of Energy Process Engineering and Chemical Engineering (IEC) of TUBAF is responsible for the proposed subproject of the C3-Mobility Network. With the professorships of Reaction Engineering (RT; Prof. Kureti) and Energy Process Engineering and Thermal Residue Treatment (EVT; Prof. Meyer), two working groups are involved which are particularly well known in the project-relevant areas of Catalyst Development (RT) and Synthesis Gas Technology (EVT).
The professorship RT has a proven expertise in the fields of heterogeneous catalysis and reaction technology, especially with regard to exhaust gas purification, CO2 reduction and fuel production. Particular attention is paid to the knowledge-based development of new catalytic materials and processes. This concept includes the detailed characterization of catalysts as well as investigations on mechanism and kinetics. Based on this knowledge, the targeted design of highly active catalysts is carried out. In addition, there is in-depth expertise in kinetic modelling and process modelling and optimization. In the field of fuel production, the focus is on CO2 mechanization, CO2 methanolization, Fischer-Tropsch synthesis, the MtG process and vegetable oil hydrogenation. The preparation, testing and physical-chemical characterization of the catalyst materials before and after gasoline synthesis is considered to be of comprehensive importance. The corresponding analysis equipment and systems as well as the relevant expert reports are available at the TUBAF Institute. The aim is to develop catalysts and optimize the process parameters for the MtG process. This is done at an MtG plant with a micro reactor, which is already available in the professorship before the start of the project. In addition to this MtG laboratory test facility, another small MtG facility exists in the RT professorship, where thematically similar MtG experiments were carried out in advance. As a result of the developed, optimized catalyst, kinetic investigations are carried out at the MtG laboratory plant, on the basis of which a kinetic model is created in order to obtain a detailed understanding of the complex reaction sequences. On this basis, the technical process will be further optimized.
In addition to its laboratory analytical knowledge and experience in the operation of small and large-scale pilot plants, the professorship EVT will primarily contribute to the joint research project the large-scale pilot plant for gasoline synthesis (STF plant) constructed within the framework of the research project “Development of a new technology for the production of high-octane gasoline from synthesis gas” (duration 2008 – 2013). The novel syngas-to-fuel process, which does not require the otherwise usual, complex product post-treatment, was developed in the aforementioned research project together with the project partner CAC, converted to pilot scale and successfully tested at the IEC. The high-octane gasoline is synthesized in two stages: An upstream methanol synthesis process, which processes up to 700 m3/h (normal) synthesis gas, is followed in a second reactor by gasoline synthesis with a nominal output of 120 l of gasoline per hour. As part of the research project applied for, the STF large-scale pilot plant is to be retrofitted and thus upgraded for gasoline production on a 2×20-tonne scale in order to guarantee stable test operation over several weeks while maintaining the constant qualities of the high-octane gasoline and thus the provision of the gasoline quantities required for the fuel tests taking place at the C3-Mobility project partners.
The subproject of the Institute of Energy Process Engineering and Chemical Engineering (IEC) of the TU Bergakademie Freiberg contributes to the research-based use of regenerative fuel based on methanol. It has a volume of € 3.3 million and is fully funded by the BMWi (duration: 01.09.2018 – 31.08.2021). In addition to the development of advanced catalysts and their testing by the Project Leader Professorship for Reaction Engineering, the large-scale gasoline synthesis pilot, plant (STF) at the Professorship for Energy Process Engineering and Thermal Residue Treatment, will be converted to a new reactor concept by the project partner Chemieanlagenbau Chemnitz GmbH and upgraded for several weeks of test campaigns for the production of high-octane gasoline of constant quality. In the years 2019 and 2020, 10 to 20 tons of gasoline each will be produced in two test runs using purchased “green” methanol and made available to the C3-Mobility project partners for fuel tests and vehicle fleet tests. Synthesis processes and test results will be extensively evaluated by IEC scientists on the basis of material and economic indicators.